Multiple Branch Prediction for Wide - Issue Superscalar ∗
نویسندگان
چکیده
Modern micro-architectures employ superscalar techniques to enhance system performance. Since the superscalar microprocessors must fetch at least one instruction cache line at a time to support high issue rate and large amount speculative executions. There are cases that multiple branches are often encountered in one cycle. And in practical implementation this would cause serious problem while there are variable number of instruction addresses that look up the Branch Target Buffer simultaneously. In this paper, we propose a Range Associative Branch Target Buffer (RABTB) that can recognize and predict multiple branches in the same instruction cache line for a wideissue micro-architecture. Several configurations of the RABTB are simulated and compared using the SPECint95 benchmarks. We show that with a reasonable size of prediction scope, branch prediction can be improved by supporting multiple / up to 8 branch predictions in one cache line in one cycle. Our simulation results show that the optimal RABTB should be 2048 entry, 8-column range-associate and 8-entry modified ring buffer architecture using PAs prediction algorithm. It has an average 5.2 IPC f and branch penalty per branch of 0.54 cycles. This is almost two times better than a mechanism that makes prediction only on the first encountered branch. key words: branch prediction, wide-issue superscalar, branch target buffer, branch penalty
منابع مشابه
Block - Level Prediction for Wide - Issue Superscalar Processors
Changes in control ow, caused primarily by conditional branches, are a prime impediment to the performance of wide-issue superscalar processors. This paper investigates a block-level prediction scheme to mitigate the e ects of control ow changes caused by conditional branches. Instead of predicting the outcome of each conditional branch individually, this scheme predicts the target of a sequent...
متن کاملEvaluating Branch Predictors on an SMT Processor
Simultaneous multithreading (SMT) provides significant increases in microprocessor throughput by issuing instructions from multiple threads per clock cycle. SMT can be realized in a wide-issue superscalar with a modest increase in resources, because much of the hardware is shared among the multiple thread contexts. Branch prediction accuracy, a key component of microprocessor performance, can s...
متن کاملThe Benefit of Multiple Branch Prediction on Dynamically Scheduled Systems*
Providing instructions for wide-issue systems is a challenge because the execution path must be predicted before branches are even decoded. Since basic blocks can easily be smaller than the issue width of near future systems multiple branch prediction is important. An early solution to the problem is the multiple branch predictor (MBP) of Yeh, Marr, and Patt. A PC-indexed branch address cache (...
متن کاملAlternative Implementations of Two Level Adaptive Branch Prediction
As the issue rate and depth of pipelining of high performance Superscalar processors increase, the importance of an excellent b r a n c h predictor becomes more vital to delivering the potential performance of a wide-issue, deep pipelined microarchitecture. We propose a new dynamic branch predictor (Two-Level Adaptive Branch Prediction) that achieves substantially higher accuracy than any other...
متن کاملAlternative Implementations of Two - Level Adaptive Branch
As the issue rate and depth of pipelining of high performance Superscalar processors increase, the importance of an excellent branch predictor becomes more vital to delivering the potential performance of a wide-issue, deep pipelined microarchitecture. We propose a new dynamic branch predictor (Two-Level Adaptive Branch Prediction) that achieves substantially higher accuracy than any other sche...
متن کامل